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Lightning Location

The Lightning Mapping Array (LMA) is a collection of radio wave Time of Arrival (TOA)
sensors. With knowledge of the sensors� positions and TOA�s from a source, it is possible to
locate the source and find its time of occurrence. The n sensors� locations are specified by (hj, Vj,
λ j),  j = 1, 2, …, n, where h denotes altitude above the Earth�s surface, V is the geodetic latitude,
and λ is the longitude. We will also use spherical coordinates (R,ϕ, λ), with R being the distance
from the center of the Earth and ϕ denoting spherical latitude. Oblate spheroidal coordinates are
given by (ξ, η , λ), where ξ = constant represents an oblate spheroid and η  is the spheroidal
latitude. The longitudes in all 3 systems are the same. Latitudes are related through
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where a = 6378137 m and b = 6356752.3142 m are the mean equatorial and polar radii of the
Earth respectively [3].

Let uw � and �  be vectors pointing from the center of the Earth to the North Pole and to the
intersection of the equator and prime meridian respectively. Define .��by  � uwv ×  Clearly,
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Here, .m 52185422 ≈−= baA

Sensor locations may be written in terms of Cartesian coordinates by using

,sinsin,sin)coscos(,cos)coscos( wVhbvVhauVha =+=+=+ ηληλη (3)

where η  is obtained in terms of V by (1). Another transformation is used to place the origin of a
new coordinate system at the location of sensor 1. We use
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In the xyz system, the sensors� z coordinates are not very different compared to other distances in
the problem. This may account for more difficulty in retrieving results in this direction,
particularly for sources that are distant from the network of sensors. Retrievals of x, y, and t are
generally better. A method is suggested to improve the retrieval of the z coordinate of the source.

If we let the position vector zyxr ��� zyx ++=  denote the source location and rj be the locations of
the sensors, then
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( ),ttc jj −=−rr (5)

where c is the speed of light, t is the time of occurrence of the lightning event, and tj denotes the
TOA recorded at sensor  j. More sensors are used than are necessary to solve the system of eqs.
in (5). The effects of timing errors may be decreased by solving the system in a least squares
sense; i.e.,
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is to be minimized. Apparently, numerical algorithms must be employed to solve the nonlinear
problem. Computer time may be reduced by starting with a good estimate of the solution.

Reasonable estimates of the minimum of E might be obtained by working with
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instead. One method available is to write rrrr ⋅−+=− jjj rr 2222
 and subtract off the nonlinear

terms by using ( )2
1

22

1 ttc −=−rr  [5]. This leads to a system of linear eqs.

Instead of subtracting the eq. for TOA at sensor 1, we can follow [4] and subtract a TOA eq.
averaged over all of the sensors,
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This leads to the linear system
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It was demonstrated in [4] that the averaging approach yielded results almost as good as those
obtained by minimizing E in (6).

Even with this method, the retrieval of the z coordinate might be improved. If the x, y, and t
results are reasonably good, we can substitute these results back into (7) and minimize E as a
function of z alone. This leads to the cubic eq.
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The solution that yields the smallest value of E is to be used. Define the following sums of
sensor coordinates:
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These sums may be evaluated and stored in memory once the sensors are selected. Certain
additional sums will have to be performed after arrival times at the sensors are obtained,
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In terms of the sums defined above, the sum of the squared residuals is given by
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The cubic eq. obtained by setting ,0=∂∂ zE
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may be solved exactly [1]. The coordinates as given by the procedure described may be used as a
starting point for a numerical method (e.g., Newton, Marquardt [2]) to minimize E.   

Once x, y, z, and t are obtained to sufficient accuracy, the inverse of (4) may be employed to
obtain the source location in terms of the Cartesian coordinates u , v , and w. From these,
longitude is immediately obtained from .tan uv=λ  For the latitude and altitude, we begin with
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where
 
ρ  and w  correspond to a point on the surface of the Earth directly below the source.

Substituting into the eq. of the oblate spheroid taken as the Earth�s surface yields
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Once the unknown constant µ is obtained, the associated coordinates ρ0 and w0 may be recovered
by (15). The geodetic latitude and altitude may be calculated from
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Since spherical and geodetic latitudes are not very different, we may simply perturb;
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The geodetic latitude may then be recovered by (1), and the altitude may be determined from (3).
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